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Outline 



Tracheobronchalmalacia (TBM) 



Tracheobronchalmalacia (TBM) in Humans 

1st Patient 
Etiology 

• Compression of airway, typically by malformed vascular structures 
• Complete collapse on expiration 
• Currently treated by tracheostomy/ventilators 1-2 years 
• Significant complications, including death 
• Need for patient specific implants due to different defect 
     geometry (length, diameter, number) 
• Stents have failed in children; FDA warning metallic tracheal stents 
• Implanted splints external to airway found to give better results, but  
     produced in an ad hoc manner 

 

http://www.radiologyassistant.nl/data/bin/a5097977d7b221_double-arch.jpg


Tracheal Splint Clinical Goals 
and Design 



• The splint should provide radial compressive mechanical support to keep the 
airway open and patent:  M/B – 0.12 MPa artery; .01 MPa exhalation  

• The splint should provide this radial mechanical support for a period of 24-30 
months to allow tracheal remodeling and development: M/B  

• The splint should allow transverse and bending displacement, not interfering 
with cervical motion: M  

• The splint should allow growth and expansion of the tracheobronchial 
complex during this 24-30 month period: M - estimated 15N growth force 

• The splint should not cause adverse tissue reaction or remodeling: B/M - 
Biocompatible  

• The splint should not interfere with the mucociliary architecture with the 
trachealbronchial lumen; it therefore should be placed externally: B/S 

• Second surgical procedure should be avoided to remove the splint; 
therefore, the splint should be bioresorbable: S/M – resorbable in 3 years 
Surgical placement of the splint and attachment of the tracheobronchus into 
the splint should be straightforward: S; suture holes in splint to “sling” airway 

• Patient Specific to account for different malacic airway diameter/length: S/M 

Clinical Design Goals: Implanted Splint External to Airway 
Mechanical Requirement: M; Biomaterial Requirement: B; Surgical Requirement:: S 



•   MATLAB program to automatically generate bellow design w suture holes 
•   Design variables: inner diameter, open angle, spiral angle , bellow height, 
    wall thickness, suture hole width, etc (> 3,000,000 design perturbations) 
•   Input parameters from CT measurements from MIMICS Digital Model 
•   Fit splint to patient model in MIMICS 
•   Perform finite element analysis: compression, bending, opening (growth) 
•   Complex patient specific design requires 3D printing 

2nd Patient 
(1 of 2 splints) 

3rd Patient 
(Only blue 
splint used) 

Patient Specific Image-Based Design for Splint 



Laser Sintering PCL Splints 



Design and Manufacture Process: Outline 
CT Scan - 3DPatient Model inMimicsSplint Design &Analysis -MATLAB/MIMICS/FEA(Bellowallspiral050114)DesignManufactureReceiveRaw PCLMill PCLReceive HABlend PCL & 3-5% HALaser Sinter SplintsSet ParametersMimics:1. Generate Splint STL2. Size Splint toMalacicDefectSlice Splint STL FilesStore Raw PCLStore HATest Splint Geometry &MechanicsPackage & Label SplintSterilize Splint



• Modular Image-Designed Scaffolds fabricated by laser sintering 

Scaffold/Implant Manufacturing by 3D Printing 

PCL Laser Sintering 
Final Manufactured 
Scaffold 

Modular 
Image- 
Designed 
Scaffold 

Complete Video at 
http://www.mottchildren.org/news/archive/201403/babys-life-
saved-after-3d-printed-devices-were-implanted-u 



• EOS P100 Laser Sintering System (www.eos.info/en) 
 

• CAPA 6501 Polycaprolactone (PCL) purchased from 
Polysciences (www.polysciences.com) Target Mw = 50kDa 

 

• Hydroxyapatite (HA) Plasma Biotal  (www.plasma-biotal.com)  
 

• Need to Cryogenically Mill Resorbable Polymers (PCL, PLA) 
Jet Pulverizer (www.jetpulverizer.com); Fraunhofer 
(http://www.umsicht.fraunhofer.de/en.html) ; Evonik (http://north-
america.evonik.com);  Target Particle Size Range: 25µm < x < 125 µm; 
Median 40-60 µm 
 
References:   
Partee et al., 2006, J Man Sci Eng, 128:531-540 
Williams et al., 2005, Biomaterials, 26:4817-4827  
Eshraghi, Das, 2010, Acta Biomaterialia; 6: 2467-2476 
Eshraghi, Das, 2012, Acta Biomaterialia; 8: 3138-3143 
Lohfield et al., 2012, Acta Biomaterialia; 8:3446-3456 
Eosoly et al., 2010, Acta Biomaterialia; 6:2511-2517 
  
 

Materials and Equipment 
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• Important PCL Laser Sintering Parameters: Bed Temperature, 
Laser Power, Laser Scanning Speed, Scan Spacing, Hatch 
Spacing, Beam Offset 
Our parameters established at University of Michigan: Partee, 
Hollister, Das. (2006) J Mfg Sci Eng, 128:531-540 

 

• Laser Power:  1 - 5.4 Watts;  Typically 4 Watts (UM) 
 

• Bed Temperature: 38 – 56oC; Typically 50-56oC (UM) 
 

• Laser Scanning Speed: 900 – 1800 mm/s; Typically 1000-
1500mm/s (UM) 
 

• Scan Spacing:  .07 - .2mm; Typically 0.15 – 0.2mm (UM) 
 
References (see prev slide):  Eshragi/Das (2010/2012); Lohfield (2012); 
Eosoly (2010; 2012); Partee (2006); Williams (2005) 

PCL Laser Sintering Parameters 



Clinical Use and Outcomes 



Patient 1: 
Left Bronchus; 
IRB Approval,  
Emergency through FDA 
NEJM (2013), 368:2043-2045. 
31 months post-surgery 
 

Design & Implantation of Patient Specific Splints 

Patient 2: 
Bilaterial Bronchi; 
IRB Approval,  
Emergency through FDA 
8 months post-surgery 
 
Patient 3: 
Left Bronchus; 
IRB Approval,  
Emergency through FDA 
6 months post-surgery 
 



Patient 1: 
Left Bronchus; 
Exhalation Scans 
 

Pre-Op and Post-OP Patency 

Patient 2: 
Bilaterial Bronchi; 
Exhalation Scans 
 
 

Patient 3: 
Bronchoscopy 
 

Pre-Op 
 
 

Post-Op 
 
 

Post-Op 
 
 

Post-Op 
 
 

Pre-Op 
 
 

Pre-Op 
 
 



Bronchial Growth in Patients 

Hydraulic Diameter Measures Averaged along Bronchus in MIMICS 

3 months at surgery 16 months at surgery 

5 months at 
surgery 



All Patients Pre- and Post-Op 

Patient 1 – 
2nd Birthday 

Patient 1 – 
Pre-Op 

Patient 2 – 
First time 
sitting up 

Patient 2 – Pre-op 
16 months 

Patient 3 – 
Pre-Op 

Patient 3 – 
Post-Op 2 
months 



Quality Control:   
Current & Future 



• Powder:  Check particle size range; Powder Visual Inspection; 
Humidity Solid Hygrometer Should be 10% to 35% relative 
humidity 
 

• Build:  Check for errors on build log; visual inspection for part 
dragging; visual inspection for sintered “islands” when unpack 
build; stair stepping on parts 
 

• Geometry: Caliper Measures (current); Micro-CT to assess part 
geometry/density (implementing) 

 

• Mechanical Properties: Standard cylindrical test specimens for 
modulus; splint specimens opening, compression, bending 
geometric stiffness (implementing) 

Quality Control Checks for Each Build 



• For topology optimized (optimized for stiffness/permeability) microstructures, 
compare designed vs manufactured geometry by microCT (implementing for splint) 

Geometry Quality Control 

Design/Fabrication Process 

Design to Fabricated Strut/Throat Comparison 

Fidelity depends on Unit Cell Size & thus 
Feature resolution; Dias et al, (2014), 36:448-457 

2uc: 14-50%;  
3uc: 4-30%;  
4uc: .3-20% 

design∆



Mechanical Testing Quality Control - General 
Solid Test Cylinder Modulus 
1. Affected by Laser scanning 

parameters: Bed Temp, Laser Power, 
Scan Speed 1200-2500 mm/s 

2. Anisotropic due to layering 
Ex = 295.5 ± 4.4 MPa parallel to bed 
Ey = 292.7 ± 9.9 MPa parallel to bed 
Ez = 311.7 ± 1.2 Mpa  laser direction 

Optimized Microstructures 
1. Topology optimized for desired 

stiffness/permeability 
2. Compare FE idealized to laser 

sintered mechanically tested 
3. Correlation deviates from 1 to 1 as 

feature sizes get smaller (< 0.8mm) 

Coelho et al, (in press) Med Eng Phys 



Mechanical Testing Quality Control - Splint 
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Patient 1 -   Compression: 128.6 ± 11.8 N/mm;  Opening: 2.77 ± 0.26 N/mm;  
 
Patient 2 -   Compression: 72.2 ± 14.6 N/mm (11mm);  Opening: 1.43 ± 0.12 N/mm;  
                                             195.8 ± 16.2 N/mm (23mm); Opening:  2.43 ± 0.15 N/mm; 
 
Pig Preclinical:   Compression: 28.5 ± 1.6 N/mm;  Opening:  .43 ± 0.05 N/mm;  
20% growth over 8 months 

Compression: 
Simulate 
exhalation 
loading 

Opening: 
Simulate growth and 
inhalation loading 

Design Target: 
1. Withstand arterial 

compression & 
respiration pressure 

2. Allow growth 



Fatigue & Degradation Quality Control 
• For resorbable materials, need to determine affect of sintering on fatigue & 

degradation 
 

• Sintering doesn’t significantly change/degrade PCL molecular weight prior to 
implantation; ~40% loss of Mw by 18 months in vivo (spine cage in pig). 
 

• Fatigue properties depend significantly on geometry; Have run spine cages 
to 5 million cycles in dry environment – need to test in solution 



• Developed Laser Sintered, resorbable PCL patient specific splint for treating 
tracheobronchalmalacia; Successful in 3 patients up to 31 months 
 

• Fabricated topology optimized scaffolds with complex microstructure 
 
• Splints with 0.4 to 2.8 N/mm opening stiffness allowed growth in patients and 

preclinical pig model; 28 to 195 N/mm compression stiffness protects 
malacic airway  
 

• Laser parameters (scan speed, bed temp, scan power, particle size) 
significantly affect device geometry, mechanical properties (stiffness, 
strength, fatigue) & degradation (need to be tested) 

 
• Ability to meet geometric and mechanical requirements depends on how 

close feature size is to minimum resolvable sintering feature -> closer to 
minimum feature size will mean larger deviation between design & actual 
properties 

Conclusions 
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